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1. Imaging principle of GRIN waveguide 

Graded-index (GRIN) waveguide is a light-transmitting medium characterized by a graded 

refractive index [1]. In this paper, we have chosen the widely used GRIN lens as the central 

component of our experiments. Its refractive index exhibits a radial distribution proportional to the 

square of the radius, while it remains constant along the axial direction. Consequently, GRIN lenses 

can effectively transmit nearly axial meridional rays to achieve imaging. These rays follow a 

sinusoidal path and periodically converge, significantly reducing intermodal dispersion [2]. Here, 

we will provide a brief derivation of this phenomenon. 

Here, we take the optical axis as the z-axis. Since only meridional rays are considered, their 

trajectory always lies in a plane passing through the optical axis. Due to symmetry considerations, 

we only need to consider the radial direction, denoted as the r-axis. Therefore, the refractive index 

distribution of the GRIN lens can be expressed as: 

𝑛(𝑟, 𝑧) = 𝑛0 (1 −
𝐴

2
𝑟2) (S1) 

Where 𝑛0  is the refractive index at the center of the GRIN, and 𝐴  is the refractive index 

distribution coefficient. This is based on the ray equation from the generalized law of refraction [3]: 
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) = ∇𝑛 (S2) 

Where 𝑟 represents the coordinates of the ray trajectory, and it is given by: 

𝑟 = (𝑟(𝑧), 𝑧) (S3) 

To describe the trajectory of light within the GRIN lens, it is necessary to find the relationship 

between 𝑟(𝑧) and 𝑧. Here, we introduce the paraxial approximation: 

𝑑𝑠 ≈ 𝑑𝑧 (S4) 

Substituting equation (S2) and simplifying accordingly, we obtain: 
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Where, as obtained from equation (S1): 

{
∇𝑛 = −𝑛0𝐴(𝑟, 0)

𝑑𝑛

𝑑𝑧
= 0

(S6) 

Substituting into equation (S5), we have [4]: 

−𝑛0𝐴 ∙ (𝑟, 0) = 𝑛0 (1 −
𝐴

2
𝑟2) ∙ (

𝑑2𝑟

𝑑𝑧2
, 0) (S7) 

Simplifying, we get: 

𝑑2𝑟

𝑑𝑧2
+ 𝐴 ∙ 𝑟 = 0 (S8) 

The above is the trajectory equation for the on-axis meridional ray in a GRIN lens. For a point 

source located at a distance 𝐷 along the optical axis of the GRIN lens, with an outgoing ray at an 

angle 𝜃, the initial conditions are given by: 

{
𝑟(0) = 𝐷𝜃
𝑑𝑟

𝑑𝑧
(0) = 𝜃

(S9) 

Substituting equation (S9) as initial conditions into equation (S8) and solving, we obtain the 

relationship between 𝑟(𝑧) and 𝑧 as follows: 

𝑟(𝑧) = 𝐷𝜃 ∙ cos(√𝐴𝑧) +
𝜃

√𝐴
∙ sin(√𝐴𝑧) (S10) 

The above equation describes the trajectory of the on-axis meridional ray in a GRIN lens, taking 

the form of a sinusoidal curve. Clearly, this trajectory is dependent on the incident conditions and 

the length of the GRIN lens, denoted by 𝐿. The on-axis meridional ray will converge at a distance 

𝐷′ along the optical axis: 

𝐷′ = −
𝑥(𝐿)

𝑥′(𝐿)
=

𝐷 ∙ cos(√𝐴𝐿) +
1

√𝐴
∙ sin(√𝐴𝐿)

𝐷√𝐴 ∙ sin(√𝐴𝐿) − cos(√𝐴𝐿)
(11) 

In this case, 𝐷′  is independent of the angle of the incident light, indicating that all on-axis 

meridional rays converge at the same point. This implies that a GRIN lens can achieve ideal imaging 

for on-axis meridional rays. 

It is worth mentioning that Equation (S10) is a periodic function, and the length of one period 

corresponds to the pitch (P) value of the GRIN waveguide: 

𝑃 =
2𝜋

√𝐴
(S12) 

The imaging behavior of a GRIN waveguide depends on the number of pitches it encompasses, 

thus being closely related to its length. 

2. Aberration analysis of GRIN waveguide 

As discussed earlier, GRIN lenses can effectively converge on-axis meridional rays to achieve 

imaging. Rays that do not satisfy this condition, including non-axial and non-meridional rays, 

introduce aberrations to the GRIN imaging system. As shown in Fig. S1, ZEMAX simulation results 

indicate that when the aperture of the GRIN lens is large, the trajectories of rays that do not satisfy 

the on-axis condition are compressed axially, meaning their 𝑃 values are relatively small, resulting 

in convergence at different points along the axis. Moreover, due to the inability to provide analytical 



solutions for the trajectory equation under these conditions, this leads to complex higher-order 

aberrations. 

 

Fig. S1. Simulation of trajectories for non-axial rays in a GRIN lens. 

It is evident that, under the influence of non-axial rays, the received image on the ideal image 

plane will be plagued. Furthermore, for non-meridional rays, their trajectories and aberrations are 

more complex, and further exploration can be found in the work of Merchand E. It's worth noting 

that the two mentioned aberrations are closely related to the length of the GRIN lens. Specifically, 

both aberrations accumulate as the light travels through the lens, meaning that the more pitches the 

GRIN lens contains, the greater the accumulated aberrations. Additionally, the distribution of 

aberrations is associated with the length of the lens, making it challenging to provide a more precise 

quantitative analysis. 

Length mismatch in GRIN waveguides is another significant source of aberrations, introducing 

unpredictable distortions to imaging and even altering the reality of the images formed. Two main 

reasons contribute to the length mismatch in GRIN waveguides. Firstly, due to the presence of 

material dispersion, the refractive index of the GRIN waveguide is wavelength-dependent. 

Consequently, the effective length of the GRIN changes significantly when illuminated with 

different wavelengths or white light sources. The second source arises from mechanical errors and 

potential wear. While these factors can be controlled to a certain extent, they become non-negligible, 

especially in the case of small-aperture GRIN endoscopes. 

The numerical aperture (𝑁. 𝐴.) of a GRIN lens is solely dependent on the refractive index 

distribution and is expressed as follows [5]: 

𝑁. 𝐴. =  √𝑛0
2 − 𝑛2(𝑅) (S13) 

Here, 𝑅 represents the half-radius of the GRIN lens. GRIN endoscopes often demand a smaller 

aperture and a larger 𝑁. 𝐴. Considering equation (1), reducing the value of 𝑅 and increasing the 𝑁. 𝐴. 

requires a larger refractive index constant, denoted as 𝐴 in equation (S12). Consequently, this leads 

to a decrease in the 𝑃 value of the GRIN lens [6]. Therefore, minor length mismatches result in more 

variations in the number of pitches, amplifying the impact of length mismatch in GRIN endoscopes. 

3. More details about the cascaded network 

Here are the specific details of the cascaded network. In Fig. S2(a), the improvement of 

ResNeSt50 [7] over ResNet is illustrated, namely, the Split-Attention mechanism. Split-Attention is 

a distinctive feature of the ResNeSt model, designed to enhance the network's ability to learn 

interrelations among features. In this mechanism, the network segments channels into several groups, 

treating each group as a distinct subset. Within each group, an attention mechanism is implemented, 

enabling the network to assign varying weights to different groups of channels. This process allows 

for more selective capturing of interrelations among input features. By integrating channel grouping 

with attention mechanisms, "Split-Attention" promotes interaction between various channel groups, 

empowering the network to amalgamate information from diverse channel subsets and thereby gain 

a deeper understanding of inter-feature relationships.  

Moreover, this design mitigates channel competition, fostering a more synergistic approach to 

processing information from different channels, as opposed to having them compete during the 

learning process. In essence, the innovation of "Split-Attention" lies in its incorporation of channel 



grouping and attention mechanisms, significantly boosting the network's capacity to discern the 

interrelation of input features, which in turn enhances overall model performance. This attribute is 

especially advantageous for visual tasks, as it allows the model to more flexibly and effectively learn 

complex relationships among different channels in images. In Fig. S2(b), our enhancement to the U-

Net model [8], namely the spatial attention mechanism. The channel attention mechanism in SENet 

(Squeeze-and-Excitation Network) is operationalized through the integration of the Squeeze-and-

Excitation (SE) module. This process begins with the module aggregating global information for 

features on each channel via global average pooling.  

Following this, a compact fully connected network is deployed to learn and assign weights to 

each channel based on this globally aggregated information, thereby highlighting the significance of 

individual channels. Once these channel-specific weights are determined, they are applied to 

modulate the original features, resulting in a feature representation that prioritizes more critical 

channels. This channel attention mechanism empowers the SENet to dynamically modify the 

weights of each channel during the learning process, significantly enhancing the network's capacity 

to discern features across different channels, which ultimately leads to improved model performance. 

Such a design not only augments the flexibility of the network but also enables it to more adeptly 

conform to the characteristics of the input data. 

 

Fig. S2 (a) The Structure of the Split-Attention mechanism. (b) The Structure of the spatial 

attention mechanism.  

4. More CNN recovery results 

Here, we provide additional restoration results below shown as Fig. S3. The conclusions align 

with the descriptions in the main text, as both methods exhibit comparable performance in restoring 

real images, while the single CNN performs significantly worse in restoring virtual images compared 



to the classified-cascaded CNN. Therefore, Fig. S4 presents more comparative images of their 

performance in restoring virtual images. 

 

 



 

Fig. S3. Restoration results for imaging random-length GRIN waveguides using Single CNN 

and Classified-Cascaded CNN. 

 

Fig. S4. Comparison of restoration results for virtual images using Single CNN and Classified-

Cascaded CNN. 
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