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1. Imaging principle of GRIN waveguide

Graded-index (GRIN) waveguide is a light-transmitting medium characterized by a graded
refractive index [1]. In this paper, we have chosen the widely used GRIN lens as the central
component of our experiments. Its refractive index exhibits a radial distribution proportional to the
square of the radius, while it remains constant along the axial direction. Consequently, GRIN lenses
can effectively transmit nearly axial meridional rays to achieve imaging. These rays follow a
sinusoidal path and periodically converge, significantly reducing intermodal dispersion [2]. Here,
we will provide a brief derivation of this phenomenon.

Here, we take the optical axis as the z-axis. Since only meridional rays are considered, their
trajectory always lies in a plane passing through the optical axis. Due to symmetry considerations,
we only need to consider the radial direction, denoted as the r-axis. Therefore, the refractive index
distribution of the GRIN lens can be expressed as:

A
n(r,z) = n, (1 - ETZ) (S1)
Where n, is the refractive index at the center of the GRIN, and A is the refractive index
distribution coefficient. This is based on the ray equation from the generalized law of refraction [3]:
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Where 7 represents the coordinates of the ray trajectory, and it is given by:
7= (r(2),2) (83)

To describe the trajectory of light within the GRIN lens, it is necessary to find the relationship
between r(z) and z. Here, we introduce the paraxial approximation:
ds =~ dz (S4)
Substituting equation (S2) and simplifying accordingly, we obtain:
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Where, as obtained from equation (S1):

Vn = —nyA(r,0)

dn (S6)
Pl 0
Substituting into equation (S5), we have [4]:
A\ (d*r
—noA-(r,0)=n0(1—Er ) E,O (S7)
Simplifying, we get:
T Ar=0 (s8)
dz? "=

The above is the trajectory equation for the on-axis meridional ray in a GRIN lens. For a point
source located at a distance D along the optical axis of the GRIN lens, with an outgoing ray at an
angle 0, the initial conditions are given by:

r(0) = D6
dr

Substituting equation (S9) as initial conditions into equation (S8) and solving, we obtain the
relationship between r(z) and z as follows:

(59

r(z) =DO - cos(\/ZZ) + % sin(\/ZZ) (S10)

The above equation describes the trajectory of the on-axis meridional ray in a GRIN lens, taking
the form of a sinusoidal curve. Clearly, this trajectory is dependent on the incident conditions and
the length of the GRIN lens, denoted by L. The on-axis meridional ray will converge at a distance
D' along the optical axis:

B x(L) _ D - cos(\/ZL) + \/LZ sin(\/ZL) an
x'(L)  DvVA-sin(VAL) — cos(VAL)

In this case, D' is independent of the angle of the incident light, indicating that all on-axis
meridional rays converge at the same point. This implies that a GRIN lens can achieve ideal imaging
for on-axis meridional rays.

It is worth mentioning that Equation (S10) is a periodic function, and the length of one period
corresponds to the pitch (P) value of the GRIN waveguide:

D' =

p=2L (S12)
VA

The imaging behavior of a GRIN waveguide depends on the number of pitches it encompasses,
thus being closely related to its length.

2. Aberration analysis of GRIN waveguide

As discussed earlier, GRIN lenses can effectively converge on-axis meridional rays to achieve
imaging. Rays that do not satisfy this condition, including non-axial and non-meridional rays,
introduce aberrations to the GRIN imaging system. As shown in Fig. S1, ZEMAX simulation results
indicate that when the aperture of the GRIN lens is large, the trajectories of rays that do not satisfy
the on-axis condition are compressed axially, meaning their P values are relatively small, resulting
in convergence at different points along the axis. Moreover, due to the inability to provide analytical



solutions for the trajectory equation under these conditions, this leads to complex higher-order
aberrations.

-

It is evident that, under the influence of non-axial rays, the received image on the ideal image
plane will be plagued. Furthermore, for non-meridional rays, their trajectories and aberrations are
more complex, and further exploration can be found in the work of Merchand E. It's worth noting
that the two mentioned aberrations are closely related to the length of the GRIN lens. Specifically,
both aberrations accumulate as the light travels through the lens, meaning that the more pitches the
GRIN lens contains, the greater the accumulated aberrations. Additionally, the distribution of
aberrations is associated with the length of the lens, making it challenging to provide a more precise
quantitative analysis.

Length mismatch in GRIN waveguides is another significant source of aberrations, introducing
unpredictable distortions to imaging and even altering the reality of the images formed. Two main
reasons contribute to the length mismatch in GRIN waveguides. Firstly, due to the presence of
material dispersion, the refractive index of the GRIN waveguide is wavelength-dependent.
Consequently, the effective length of the GRIN changes significantly when illuminated with
different wavelengths or white light sources. The second source arises from mechanical errors and
potential wear. While these factors can be controlled to a certain extent, they become non-negligible,
especially in the case of small-aperture GRIN endoscopes.

The numerical aperture (N.A.) of a GRIN lens is solely dependent on the refractive index
distribution and is expressed as follows [5]:

N.A.= /ng —n2(R) (S13)

Here, R represents the half-radius of the GRIN lens. GRIN endoscopes often demand a smaller
aperture and a larger N. A. Considering equation (1), reducing the value of R and increasing the N. A.
requires a larger refractive index constant, denoted as A in equation (S12). Consequently, this leads
to a decrease in the P value of the GRIN lens [6]. Therefore, minor length mismatches result in more
variations in the number of pitches, amplifying the impact of length mismatch in GRIN endoscopes.

Fig. S1. Simulation of trajectories for non-axial rays in a GRIN lens.

3. More details about the cascaded network

Here are the specific details of the cascaded network. In Fig. S2(a), the improvement of
ResNeSt50 [7] over ResNet is illustrated, namely, the Split-Attention mechanism. Split-Attention is
a distinctive feature of the ResNeSt model, designed to enhance the network's ability to learn
interrelations among features. In this mechanism, the network segments channels into several groups,
treating each group as a distinct subset. Within each group, an attention mechanism is implemented,
enabling the network to assign varying weights to different groups of channels. This process allows
for more selective capturing of interrelations among input features. By integrating channel grouping
with attention mechanisms, "Split-Attention™ promotes interaction between various channel groups,
empowering the network to amalgamate information from diverse channel subsets and thereby gain
a deeper understanding of inter-feature relationships.

Moreover, this design mitigates channel competition, fostering a more synergistic approach to
processing information from different channels, as opposed to having them compete during the
learning process. In essence, the innovation of "Split-Attention™ lies in its incorporation of channel



grouping and attention mechanisms, significantly boosting the network’s capacity to discern the
interrelation of input features, which in turn enhances overall model performance. This attribute is
especially advantageous for visual tasks, as it allows the model to more flexibly and effectively learn
complex relationships among different channels in images. In Fig. S2(b), our enhancement to the U-
Net model [8], namely the spatial attention mechanism. The channel attention mechanism in SENet
(Squeeze-and-Excitation Network) is operationalized through the integration of the Squeeze-and-
Excitation (SE) module. This process begins with the module aggregating global information for
features on each channel via global average pooling.

Following this, a compact fully connected network is deployed to learn and assign weights to
each channel based on this globally aggregated information, thereby highlighting the significance of
individual channels. Once these channel-specific weights are determined, they are applied to
modulate the original features, resulting in a feature representation that prioritizes more critical
channels. This channel attention mechanism empowers the SENet to dynamically modify the
weights of each channel during the learning process, significantly enhancing the network's capacity
to discern features across different channels, which ultimately leads to improved model performance.
Such a design not only augments the flexibility of the network but also enables it to more adeptly
conform to the characteristics of the input data.
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Fig. S2 (a) The Structure of the Split-Attention mechanism. (b) The Structure of the spatial
attention mechanism.

4. More CNN recovery results

Here, we provide additional restoration results below shown as Fig. S3. The conclusions align
with the descriptions in the main text, as both methods exhibit comparable performance in restoring
real images, while the single CNN performs significantly worse in restoring virtual images compared



to the classified-cascaded CNN. Therefore, Fig. S4 presents more comparative images of their
performance in restoring virtual images.

Target Lens] Lens2 Lens3 Lens4 Lens5 Lens6 Lens7
Original
Imaging
Single Restoration
CNN

PSNR 33.5635  33.8275 319867 29.7746  23.9905  24.0534  30.5639

SSIM 0.9279 0.9469 0.9061 0.9020 0.7867 0.7783 0.9214

Classified
-Cascaded
CNN

Restoration

PSNR 33.4530  33.3431  31.7792  30.6875 319179  33.2614  31.8737

SSIM 0.9292 0.9372 0.9076 0.8969 0.9144 0.9240 0.9235

Target Lens] Lens2 Lens3 Lens4 Lens5 Lens6 Lens7

Original
Imaging

Restoration
PSNR 31.4842  34.1131 325029  28.3451  26.9041  26.7722  31.9595

Single
CNN

SSIM 0.8938 0.9507 0.9052 0.8775 0.7612 0.7487 0.9066

Classified
-Cascaded
CNN

PSNR 32.0665  34.4218  33.0502 29.0521  30.1930  34.4997  33.3323

Restoration

SSIM 0.9191 0.9523 0.9063 0.8694 0.9113 0.9199 0.9205




Target Lensl Lens2 Lens3 Lens4 Lens5 Lens6 Lens7
Single
CNN
PSNR 29.9991  33.4437  28.1345  30.4139  19.4012  19.1965  30.7949
SSIM 0.8950 0.9438 0.8459 0.9003 0.5604 0.5564 0.9042
Classified
-Cascaded
CNN
PSNR 303677  33.6877  28.7517  30.2747  32.7352  31.4675  31.3395
SSIM 0.9095 0.9493 0.8622 09116 0.9441 0.9215 0.9135

Original
Imaging

Restoration

Restoration

Fig. S3. Restoration results for imaging random-length GRIN waveguides using Single CNN
and Classified-Cascaded CNN.

Single
CNN
PSNR 20.7806 22.9151 243818 22.1089 21.9757 23.8161 23.5721
SSIM 0.6393 0.7429 0.7429 0.6343 0.5027 0.6321 0.5998
Classified
-Cascaded
CNN
PSNR 31.4090 31.6373 28.1345 30.9251 30.5936 32.7193 32.6945
SSIM 0.8385 0.8552 0.8552 0.8117 0.8627 0.8602 0.8477

Fig. S4. Comparison of restoration results for virtual images using Single CNN and Classified-
Cascaded CNN.
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